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MULTIPLE SOLUTIONS FOR
LAGRANGEAN SYSTEMS IN Tn

0 Introduction

Let us consider the ordinary differential equation

+ V(q) = f(t) (0.1)

where q = (qj,... ,q,,) E R1, and V satisfies

(V) V E C2(R n,R) is ri-periodic in the qi variable, 1 < i < n.

When f(t) 0= , (0.1) possesses at least n + 1 equilibrium solutions, obtained as the
critical points of the function V. This result is classical and is obtained regarding V
as a function on the n-dimensional torus Tn, and using the fact that the Ljusternik-
Schnirehnann category of T" is n + 1.

When f is not necessarily equal to 0 and it satisfies

(f) f E C(R, R ) is T-periodic and

0jf(t) dt = 0,

then it has been proved in (1], (5] and (11] that (0.1) possesses at least n+ 1 T-periodic
solutions.

However the function V regarded as a function in T may have more that n + 1
critical points. For example if V is a Morse function it is known that V possesses at
least 2n critical points. In this paper we give some conditions on V and f so that if
V has t critical points then (0.1) possesses at least I T-periodic solutions. We will
prove

Theorem 0.1 Assume V satisfies (V) and it has exactly t nondegenerate critical
values cl < ... < ct, and f satisfies (f). If

4 
0

{Tmax I VV(x) I +T2 11 f 1121 < 8r' min (c - cj-.) (0.2)
xERn 2<jt

then (0.1) possesses at least e T-periodic solutions. or

In Theorem 0.1 " J denotes the usual norm in R" and 1" 112 the usual norm in L2[0, T].

Our hypothesis in V implies that t > 2". In [3] a multiplicity result is obtained when ,

the functional associated to (0.1) is assumed to have only nondegenerate critical
points. Under this condition (0.1) possesses at least 2 n T-periodic solutions. However
this condition is hard to check in a concrete problem. n/
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We will prove this theorem as a particular case of a general result for a Lagrangean
system having Tn as its configuration space. In this context we mention a recent result
of Chang, Long and Zehnder [2] on the n-pendulum, and also the previous results on
the double pendulum by Fournier and Willem [6]. In [21 a general critical point result
obtained by using relative category is applied to the n-pendulum equation yielding at
least 2' T-periodic solutions. Our results, when applied to the n-pendulum equation
yields a similar result, and it is in a certain sense more general.

Our method is based on the notion of relative category introduced by Fadell in
[41, and later and independently by Fournier and Willem in [6]. The idea is to relate
the level sets of a finite dimensional functional with the level sets of the functional
corresponding to the differential equation.

The computation of the relative category in concrete cases is difficult in general,
and in order to get useful estimates of it we often need to use cohomological argu-
ments. In this paper we keep our results in a simple form in such a way we do not
need to use cohomological estimates. See Remarks 3.2 and 5.1.

The ideas we use to study Lagrangean systems can also be applied to some elliptic
problems with Neumann boundary conditions. Let R2 C Rn be a smooth bounded
domain and let 2-, denotes the normal derivative of u on the boundary all. We
consider the Neumann problem

-Au+u=p(u)+h(x) xE!Q (0.3)

auu x E af. (0.4)

where p satisfies

(pl) p G C1 (R,R) is a bounded function,

and h satisfies

(h) h E C' (Q, R).

Let us define
h = I f(x)dx and P(u) = p(s)ds (0.5)

and let us consider
v(s) = - h - P(s). (0.6)

Let 0 denotes the L- norm and I f I the Lebesgue measure of f2. Then we prove
the following theorem.

Theorem 1.5.1
Assume that h satisfies (h), and p satisfies (pl) and the function v has t critical

values cl < ... < ct each of them being a strict local maximum or minimum. If

{11 h - h 112 + Ip100 I1}2 < 4 1 S1 1 min (cj - cj-) (0.7)
2<j<t"
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then (0.4) possesses at least t classical solutions.

The author wants to express his gratitude to his thesis adviser Professor Paul Ra-
binowitz for his help, encouragement and patience. He also wants to thank Professor
Edward Fadell for many enlightening conversations.

1 Ljusternik-Schnirelmann Relative Category

In this section we present the notion of Ljusternik-Schnirelmann (L.S.) relative cate-
gory as introduced by Fadell [4]. We give the basic definitions and properties and we
applied it to prove a general critical point theorem that we use later in the applica-
tions. For the classical notion of (L.S.) category we refer the reader to [12].

Definition 1.1 Let M be a topological space and let U C M. U is called categorical
in M if it is contractible to a point in M.

Definition 1.2 Let (M, A) be a topological pair with A # 0 and closed in M. Let
U C M such that A C U, then U is called categorical relative to A in M if there is a
homotopy H : [0, 1] x U - M such that

H(O,x)=x VxEU
H(1,x)EA VxEU
H(t,x)=x VxEA,VtE[0,1].

Definition 1.3 Let A C X C M. An open cover Ql of X is called admissible if fQ
has the form fl = {W, U1, U2 ,.. .} where A C W, W is categorical relative to A, and
each U, is categorical.

Definition 1.4 If A C X C M with A nonempty and closed in M, then the (L.S)
relative category of (X, A) in M, denoted by catM(X, A), is n if there exist an ad-
missible cover fl = {W, U1,..., Un}, and n is minimal with this property. If such an
n does not exist, then we say catM(X, A) = 00.

Remark 1.1 There are other notions of relative category. What we defined here
corresponds to the so called relative category star introduced in [4]. Fournier and
Willem in [6] introduced a slightly different notion, see also [2].

The relative category possesses properties analogous to the classical category. Let
us assume that M is normal, locally contractible and path connected, and A C M is
a closed set for which there exists an open set V D A that is categorical relative to
A. Then we have:

1. Monotonicity: If A C X C Y C M then catM(X, A) < catM(Y, A).

4
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2. Subadditivity: If A C X C M and Y C M then

catM(X U Y, A) catM(X, A) + catM (Y)

where catM(Y) denotes the usual (L.S.) category.

3. Invariance: If h : (M, A) -+ (M', A') is a homeomorphism of pairs then

catM(X, A) = catM,(h(X), A').

4. Homotopy: If A C X C M and h : [0, 1] x X - M is a homotopy relative to
A such that h(0, x) = x Vx E X then

catM(X, A) < catM(h(X, 1), A).

5. Continuity: If A C X, X closed in M, then there is a closed neighborhood U
of X such that

catM(X, A) = catM(U, A).

The hypotheses on M needed for proving these properties are satisfied, for exam-
ple, when M is a connected Riemannian manifold modeled on a Hilbert space. We
refer to [4] for more details and the proof of these properties.

Remark 1.2 The computation of the relative category is often difficult. Estimates
can be obtained by using the cohomology ring of the pairs involved. See [2], [4].
In our applications we consider cases where the computation of relative category is
simple. More refined versions of our results may require the use of cohomology theory
in order to estimate the relative category of certain pairs.

In what follows we use the relative category to prove a critical point theorem that
we apply later to study some differential equations. We will need to introduce the
Palais-Smale condition.

Definition 1.5 Let M be a Riemannian manifold. A functional of class C1 , I: M
R satisfies the Palais-Smale condition (P.S.) if for every sequence {X,,}nEN C M such
that

{I(xn)}nEN is bounded and IIVI(xn)t --- 0 as n --+ oo
there ezists a convergent subsequence.

We consider the following notation when f is a functional on M and a, b E R:
fb ={zCEM / f(x):<b}, f = {xC-M / a<f(x) :5b} and

Kb = {x E M / Vf(x) = 0, f(x) = b}.
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Theorem 1.1 (The Deformation Lemma) Let M be a complete Riemannian man-
ifold and I: M -4 R a C1 functional satisfying the Palais-Smale condition. For every
c E R, E > 0 and U a neighborhood of K,, there exists e > 0, e > E and a homotopy
17 : [0, 1] x M - M such that
DO. 17(0, x) =x Vx E M.
D1. r(t,-) is a homeomorphism Vt E [0,1].
D2. 71(t,x) =x if I (x)-c 1 E Vt E [0,1].
D3. I(77(t,x)) < I(x) Vx E M, Vt E [0,1].
D4. q(1, Ic+, \ U) C I-'.

In case Kf = 0 or more generully, if for numbers a, b we have Kc = 0 Vc E [a, b]
then the homotopy 77 can be obtained so that it satisfies DO, D1, D3, and also
D2'. ;(t,x)=x if I(x)-b> E or ()-a < -E VtE [0,1].
D4'. 77(1, Ib) C Ia.

For the proof of the Deformation Lemma we refer to [8] and [9]. Now we can prove
our critical point theorem.

Theorem 1.2 Let M be a complete, connected Riemannian manifold and I: M -- R
be a C1 functional satisfying the (P.S.) condition. Let a < b and o > 0. If A C 1a-
and

m = catM(Ib, A) - catM(I , A)

then I possesses at least m critical points in Ib.

Proof. For j > 1 we define the following class of subsets of M

Ej = {X / A C X C Ib, X closed and catM(X, A) j}

and we consider the values
ci = inf sup I(x).

XEE, XEX

Let mo = catMl(Ia, A). If j > mo and X E Ej then X n Ia #0, so that

sup I(x) > a,
xEX

thus the numbers cj are bounded from below by a. Because X C Ib, they are also
bounded by above by b. Since the classes Ei satisfies Ej+j C Ej and by the estimates
we obtained above we have

a < cmo+ .. c,,,, < b.

Let us assume that for some j > io, f > 1 we have

cj+ 1 Cj+- C.



Then we show that catM(K,) > e. By the continuity property of the usual (L.S.)
category (see [12]) there exists a neighborhood U of K, such that

catM(U) = catM(K)

and since A C Ia- a we can choose U such that U n A = 0. Let us consider F=
I(c-a + a) > 0 and choose e > 0 and 7 as given by the Deformation Lemma. Choose
X E Ej+t such that

sup I(x) < c+ . (1.)
xEX

Using the subadditivity of the relative category we have

catM(X, A) < catM(X \ U, A) + catM(U). (1.2)

If we assume catM(K,) t - 1, then from (1.2) we get

catM(X \ U,A) cat(X, A) - + 1 > j + 1. (1.3)

By (D4) in the Deformation Lemma, and the homotopy property of relative category
we obtain that

77(1,X\U)E Ej+l and sup I(x) _ c- E (1.4)
xE77(1,X"U)

contradicting the definition of c. Using similar arguments we can show that every
value c3 is a critical value of I, if mo + 1 < j < mo + m. Thus I possesses at least m
critical points.O

2 Lagrangean Systems in T'

In this section we consider Lagrangean systems having the n-dimensional torus as
configuration space. Here we introduce a mathematical framework to study the exis-
tence of periodic motions for such systems.

A Lagrangean system is characterized by its configuration space and its La-
grangean. We assume the Lagrangean has the following form:

L(q,p,t) = K(q,p,t) + G(q,p,t) - V(q) + F(q,t), (2.1)

wherep, qER ' , tER.

Remark 2.1 In mechanics the term K represents the kinetic energy, the term G
is associated to gyroscopic forces, V is the potential energy and F represents the
external forces.

Let r > 0, 1 < i < n, k E Zn, and denote rk = (rik,... ,rnkn). Also let T > 0 and
define £(Rn, Rn ) as the space of n x n, symmetric matrices with coefficients in R. We
make the following general hypotheses on the terms involved in L:
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(Li) We assume that K(q, p, t) = -(Q(q, t)p, p) where Q is a function
Q :R T x R -+ L,(Rn, Rn) of class C1 and it satisfies:

i) Q(q,t + T) = Q(q + rk, t) = Q(q,t) Vt E R, q E Rn, k C Zn, and
ii) 3AI > 0 such that (Q(q,t) ,) A , I { I Vt ER, q E Rn, E R .

(L2) We assume that G(q,p,t) = (g(q, t),p) where g : Rn x R --+ Rn is of class C' and
it satisfies

g(q,t + T) = g(q + rk, t) = g(q,t) Vt E R, q E Rn, k E Zn.

(L3) V : Rn --f R is of class C' and it satisfies

V(q + rk) = V(q) Vq E R , Vk E Z.

(L4) We assume that F(q,t) = (f(t),q) where f : R -+ Rn is continuous and it
satisfies

i)f(t+T)=f(t) VtER,and

ii) foT f(t)dt = 0.

Here and in the rest of the paper (.,) denotes the usual inner product in Rn and I
its corresponding norm.

Under the hypotheses (L1)-(L4) we can set up the mathematical framework to
study T-periodic motions of the Lagrangean system L. Those periodic motions are
T-periodic solutions of the Euler-Lagrange equation

d Lp(q, qt) - Lq(q, 4, 1) = 0. (2.2)

We consider WTI' 2 the usual Sobolev space of T-periodic functions under the inner
product

< q, >= IT(q, ) + d, dt

for q, E W -'2 . The space E W' 2 is a Hilbert space and we denote the induced
norm by I1 liE . We will denote by L . the space of square integrable functions on
[0, T] with values in Rn. We denote its usual norm by I1 I 112

In E we define the following functional:

T
I(q) = L(q, 4, t)dt.

This functional is well defined in E and it is of class C1 . Moreover critical points of I
are the classical T-periodic solutions of (2.2). To prove this we can use the arguments
given in [10]. Thus the problem of finding T-periodic solutions for (2.2) is reduced to
that of finding critical points of I in E.



In E we introduce the following action of Z'n. For q E E and k E Zn we define

kq = q + rk = (q, + Tiki,...,qn + Tnkn).

By analyzing the Fourier series of the elements of E one can see that

n/PnxT M

where E = {q E E / foT q(t) dt = 0}, and Tn is the n-dimensional torus.
The periodicity in q assumed in (L1)-(L3), and (L4) (ii) shows that I is invariant

under the Zn-action defined above, i.e.,

I(q +Trk) = I(q) Vq E E, Vk E Zn.

Thus we can define I on the quotient space M and study the critical points of I in
M. We note that M is a complete, connected Riemannian manifold.

Proposition 2.1 If the Lagrangean defined in (2.1) saiisfies (L1)-(L4) then the func-
tional I satisfies the (P.S.) condition in M.

Proof. When the functional I does not contain the term G, this proposition has
been proved in [2) and [11]. A slight modification of either of these gives our result.
We omit the details.O

The following result has beei1 proved in [1], [51 and [11], and it reflects the fact
that the (L.S.) category of Tn is n + 1.

Theorem 2.1 Assume the Lagrangean L defined in (2.1) satisfies (L1)-(L4). Then
I possesses at least n + 1 critical points.

3 Multiple critical points inherited by the poten-
tial energy V

Since the potential energy function V satisfies (L3), we can view it as a function on
Tn. Then by using (L.S.) category one can prove that V has at least n + 1 critical
points in T . In Theorem 2.1 we found that that I also has at least. n + 1 critical
points. However the function V on Tn can have more critical points. For example
if V is a C2 Morse function, then V has at least 2n critical points. In this section
we will prove some results that show that I on Al has at least the same number of
critical points as V on Tn when some extra assumptions are imposed on L.

We start with a preliminary result. In what follows we use the following notation

V = sup I VV(x)
xETn

and
-y= sup I g(x, t) I,

xETn, tEE

and we let fl(q) be the negative of the potential energy, i.e. V(q) = -v(q).
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Theorer, 3.1 Let a < b < c be real numbers and assume a is a regular value of V.
Let

m = catT- (c,V a) - catTn(b, /a).

if
{2r-y + Tv + Tf 11 f 112} < 8r 2 A(b - a) (3.1)

then I possesses at least m critical points with critical values in [Ta, Tc].

Before proving this theorem we give the following proposition based on the Deforma-
tion Lemma.

Proposition 3.1 Let Afn be a compact manifold and let f : Mn - R be a C1

functional. Assume a < b < c, and f does not have critical points in f.. Then

catM(fC, fa) = catAf-(fc, fb) (3.2)

Proof. For a E R, a regular value of f, f' is a submanifold with boundary in Mn,

then there exist an open set U, and a homotopy hi : [0, 1] x U A .M such that

hl (O,x) = x VExU
h,(1,x) E f' VxEU (3.3)
h,(t,x) = x VxEf ,Vt[O,1],

in other words f2 has a neighborhood U, that is categorical relative to fa. In order
to prove (3.2) we first show that

catM.(fc, f') < cat Mn(f , f'). (3.4)

Assume catMn(fc,fa) = m. Then there is an admissible cover of fc relative to
fa, Q2 = {U 1,..., U.n, W}. Let W' be a neighborhood of fb categorical relative to
fb. Since b is a regular value, such a W' exits. Then [2' = .U....., Urn, W'} is an

admissible cover of fc relative to fb. This proves (3.4).
Now let us show that

catM(fC,f) catM(fc, fb). (3.5)

Let catM (f c,fb) = m. Let [Q = {U 1,. . .,Um, W} be an admissible covering of fc
relative to f'. We claim that [Q is also an admissible cover of fc relative to fa. This
will complete the proof of (3.5).

Let h3 be a homotopy h 3 : [0, 1] X W-- M such that

h3 (0, x) = x VxE W
h3 (1,x) E fb VxEW (3.6)
h3(t,x) = x VxEfb, VtE[0,1].
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Let U be a neighborhood of fa and hi a homotopy as in (3.3). Since M ' is compact
there is a' > a such that fa' C U. Using (D4') of the Deformation Lemma with
E < a' - a, in the interval [a', b] we find a homotopy h2 : [0, 1] x M - M" such that

h2(0, x) = X VxEMn

h2 (1,x) E fa' Vx E Vb (3.7)
h 2(t,x) = X Vx E fa, Vt E [0,1].

Now we define a homotopy H: [0, 1] x W - M" by

h3(3t, x) 0 < t < 1/3
H(t,x) = h2(3t - 1, h3(1, X)) 1/3 < t < 2/3 (3.8)

hi(3t-2,h2 (1,h 3 (1,x))) 2/3< t < 1.

The function H is continuous and it is easy to check that it makes W categorical
relative to fa.n

Proof of Theorem 3.1. Let o" small enough so that f/ does not have critical
values in [a - o,, a], and let us define A = f/a-. Using Proposition 3.1 we see that

catTr( b , V) = catT(Vb, A) and (3.9)

catT-(C, V) -catTn(VC, A). (3.10)

If we can show that
catM(IT c, A) - catM(I T a A) > m, (3.11)

then an application of Theorem 1.2 completes the proof.
It is easy to see that V C ITc. Then by the monotonicity property of relative

category and (3.10) we obtain that

catM(ITc, A) _ catM (f-Vc, A) = catT, (Vc, A) = catTn(Vc, Va). (3.12)

Here we used that k is contractible to a point.
Let us show now that

catM(I", A) § catTN(f/, f/a). (3.13)

For q E E we write q = foT q(t)dt Iand q = q- q. We note that 4 E t. Let q E JTa

then fT 2(Q(q,t) l, 4) + (g(q,t), 4) + f/(q) + (f(t),q)dt < Ta. (3.14)

Using (L1), (L2), (L4), the Schwarz inequality and the definition of y, from (3.14) we

have ~A
I(q)dt < Ta - II11 +tT 11 1 + 11 f 112114112. (3.15)

Jo 2 2
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By the Mean Value Theorem, Schwarz inequality and definition of v we have

If V(4+q)-V(j)dt J 0 v 14l dt < vTI 2 . (3.16)

From (3.15) and (3.16) we see that
A

TV(q) Ta - 2 II2 +,T 114 112 +(I f 12 vT )i q142 (3.17)

and then, using Wirtinger's inequality in (3.17) we obtain that

A TTV(j) < Ta - .1 I2 +{'T + '(1I f 112 +vT } II (i lb (3.18)

By maximizing the quadratic p(x) = -ax 2 + fix, from (3.18) we find that

TfV(q) < Ta + 1--y{7 T + T( 11 f 112 +vTi)}2. (3.19)

Then by our condition (3.1) we obtain that "(q) < b. We have shown that if 4 + q E
ITa, then 4 E Vb.

Let us define the following homotopy:

II: [O, 1 x ITa - MH : 0,1 X Ia M(3.20)
(t,q) i (1 - t)4 + q.

Clearly H is continuous and it satisfies:

H(O, q) = q VqEITa

H(1,q) E f/b VqEITa and (3.21)

H(t,q) = q VqE f ' b.

Consequently, by the homotopy property of relative category and (3.9) we have

catM(ITa,A) < catM (Vb, A) = catT(0,A) = catTn(Vb, Va). (3.22)

Here again we have used that t is contractible. Thus we have proved (3.13). From
(3.12) a . .'3.13) we conclude that (3.11) holds, so finishing the proof.O

Remark 3.1 We note that by using Theorem 3.1 for the function V" in Tn we can
conclude ti. given

m = catTn (VC, V") - catTn (Vb, ,a)

f/ has at least m critical points in /. " may have some critical points in f/"b that
the functional I will 'lose'.

12



In the following theorem we make a global assumption on the potential energy V
and its critical points in order to obtain a multiplicity result for the critical points of
I.

Definition 3.1 An isolated critical value c of V is said to be nontrivial if for every

catTn(Vc, VC-,) > 0. (3.23)

Theorem 3.2 Let us assume that V has only isolated nontrivial critical values. Let
cl < c 2 < ... < cl be those values, and let us write

C(V) = mI (cj+ - c). (3.24)
:5j<t-1

if
{2r-I + vT + T ' /2 II f 11}2 <8r 2AC(V), (3.25)

then I possesses at least f critical points.

Proof. Since I is bounded from below and it satisfies the (P.S.) condition, we have
that infM I = Tc0 is a critical value of I, and clearly Co < cl. We show next, by
using Theorem 1.2, that for every j, 2 < j < e, I possesses at least one critical point
qj E ITc,_. Let c=c3 , b = ci -e and a = c3_ 1 + c with e > 0 to be determined later.
Since cj and cj- 1 are isolated critical values of V, by using Proposition 3.1 we have

catT( 'cJ, c- ) catTn(fVc, f/a) > 0 (3.26)

and
cat (Vb, f/a) = 0. (3.27)

Since C(V) < (cj - cj-,), from (3.25) we see that there is e > 0 so that

{2 1r-y + vT + T / 2 11 f 1121 2 < 8r 2A(b - a). (3.28)

By (3.26)-(3.28) we see that the hypotheses of Theorem 3.1 are satisfied, so that we
can conclude that I possesses at least one critical point in IT = _ Since we
can do this for every j = 2,..., f the proof is complete.O0

Remark 3.2 We could obtain other results in the spirit of Theorem 3.2 by combining
Theorem 3.1 with adequate assumptions on the structure of critical points of V. Here
we choose, in some way, the simplest situation.

Remark 3.3 If we assume V is a C2 Morse function, then, after assuming condition
(3.25), we can prove that I has as many critical points as V. The fact that every
critical value of IV is nontrivial is seen by using the 'cell-attaching' argument. See [8].
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Figure 1: The n-pendulum

4 Application to the n-pendulum

In Section 3 we proved a general result for the existence of multiple periodic motions
for a general Lagrangean system in T". Here we apply those results to a specific
example: the n-pendulum.

We will consider two cases. In the first case we study the n-pendulum with fixed
support and with an external force acting on it. In the second case we consider an
n-pendulum with moving support, but without external forces.

Let us start by describing the idealized physical situation. We have a system
composed of n particles, each of them of mass mni > 0, i -- 1, ... ,n, joined by
weightless rods of length Li > 0, i = 1,... , n. See Figure 1. Let (xi, yi) represents the
position of the particle i in the coordinate system given in Figure 1. The potential
energy given by the action of gravity forces has the form

n
V - -g rnyi (4.1)

and the kinetic energy is given by

--= Zmi(d~i + )/). (4.2)

Introducing the angular variable 0 -- (0,... ,on), from (4.1) and (4.2) we obtain

V(c) = -gM y(cls c ocos 1  (4.3)

and
= Ki((OOi,), (4.4)

where

n

EM1 =Em (4.5)

n=i
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and

-() M~ifie cos(Oi - 03) i > j (4.6)

with Qii(0) = Qii(O). If we define Q(8) to be the matrix with entries Qjj(8) then the
kinetic energy can be written as

K(0,0)= -(Q(0)0, 0). (4.7)

A straightforward computation gives the following proposition.

Proposition 4.1 The matrix Q(O) is positive definite and there is A > 0 such that

(Q(O) , ) _ A I 12 VO E R", V E R". (4.8)

Remark 4.1 The constant A only depends on the mass of the particles {mi}!, 1 and
the length of the rods {e,}i 1 . Actually one can prove that

A = c(n) min{mi, 1 < i < n} min{li, 1 < i < n},

where c(n) is a constant depending only on the number of particles n.

We have an external force acting on the system that is represented by a continuous
T-periodic function f : Rh -- Rh and we assume it satisfies

f(t)dt = 0. (4.9)

Then we can define the Lagrangean associated to the system:

L(O,,t) = -(Q(O)9,O) - V(O) + (f(t),). (4.10)
2

We refer the reader to the book by Sommerfeld [13] for more details about the deriva-
tion of the Lagrangean. From the definition of Q and V, Proposition 4.1 and condition
(4.9) on f we easily see that the Lagrangean L, defined in (4.10) satisfies (Ll)-(L4).

Now we introduce a condition on V that determines the nature of its critical
points:

(N) V has exactly 2n different critical values.

This condition is really a condition on the mass of the particles and the length of the
rods. If a E {0, } then we define

n

v(a) = g(-1)''MA e. (4.11)
i= 1

Then we can rewrite condition (N) as

v(ca) : v(a') if a 0 a' a, a' E {0, 1}'. (4.12)

Condition (N) then induces a linear order on the finite set {0, 1} defined by

a -< f9 if and only if v(a) < v(,8). (4.13)

15



Remark 4.2 One can show that condition (N) is satisfied generically on the mass of
the particles {mi}' j and the legth of the rods {l,}=. In fact, if a 5 P are in {0, 1}n

and
n n nn

o {(mt) E R/ 2n (1)Ci(M,)ti 0 (-)"(
=1 .=i i=1 j=i

where m = (M,.. .,mn) and t = (ti,.. .,en), then r,, is open and dense in R 2n

Condition (N) is satisfied when (n, t) belongs to

n l'cy,j3

that is also dense and open in R 2n

Let us define now

C(V) = min{v(s(a))- v(a) / a E {,1}n \ 1} (4.14)

where s(a) denotes the successor of a under -< and 1 = (1,.. . , 1). Given the form of
V we can easily find that

n

S= max I VV(x) 1= g(-(Mie,)2)2. (4.15)
i=1

Finally we note that under condition (N) the function N is a Morse function so that
for every a E {0, 1}n, v(a) is a nontrivial critical value. Actually

catTn (V V(a), V(a) - ) = 1. (4.16)

The following theorem is a direct application of Theorem 3.2.

Theorem 4.1 If the potential energy V satisfies condition (N) and if

{gT('(M,)2) T2 i f 1121 < 8r 2AC(V) (4.17)
i=l

then the forced n-pendulum equation possesses at least 2"n T-periodic solutions.

Remark 4.3 Our theorem is more general than Theorem 4.1 in [2] in the sense that
we do not assume any specific order in the set {0, 1}'. However, as a trade-off, our
condition (4.17) is more restrictive than the analogous condition in [2]. Assuming the
order in the critical values considered in [2] and using Theorem 3.1, we can obtain
their result. Figure 2 illuminates the situation in the case n = 2.

Remark 4.4 Condition (4.17) can not be satisfied if T is too large. It would be
interesting to have a result in the spirit of Theorem 4.1 when T is large, or at least
in certain ranges of T for which

n
T(ft,)2)> 47'AC(V). (4.18)
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Figure 2: Comparing the two situations

Now we briefly discuss the case of an n-pendulum with moving support and without
external forces. We assume that the support of the n-pendulum is moving vertically

at a velocity given by a continuous T-periodic function e : R --+ R. In this situation
the kinetic energy of the system contains an additional term given by

G(O, 0, t) = -e(t) Mli sin(0)Oi. (4.19)
i=1

Remark 4.5 To obtain (4.19) we modify in [13], page 195, the vertical velocity by

adding the function e(t) and proceed as in the other case. Actually the kinetic energy

has an additional term that we neglect because it only depends on t.

Defining gi(O, t) = -e(t)Mjei sin(0) we see that the function G satisfies our hy-

pothesis (L2). Then we have the following theorem.

Theorem 4.2 If V satisfies hypothesis (N) and if

j:(Mjej)2 {gT+ 11 e 11212 <87'r2AC(V) (4.20)
/=1

then the equation of the n-pendulum with moving support possesses at least 2 n T-

periodic solutions.

Proof. The proof is obtained in the same way Theorem 3.1 was obtained, only by

noting that the specific knowledge of the function G leads to a better estimate.

By using the Schwarz inequality, first in R n and then in L. we have

T 0T  n 0))f(g(0,t),0)dt < I e ((Ai i sinOi)2) I 2 l dt (4.21)

n

<__ (M I ))2 II e 11211 9 112 .0 (4.22)
i=1
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5 Application to the Neumann Problem

Tbe ideas presented in Section 3 for studying the n-pendulum equation can also be
applied to study the existence of solutions to certain elliptic problems with Neumann
boundary condition.

We consider the problem

-Au+u=p(u)+h(x) xEf (5.1)

auo 0 ofl (5.2)

where Q denotes a smooth bounded domain inR n and 2-u denotes the normal derivativeof u on the boundary. Let E -H'(f8) denotes the usual Sobolev space of functions

in Ql with square integrable first derivatives.
We will assume that

(pl) p: R -- R is a C1 function, bounded in L-.

and

(h) h: R is a C function.

It is well known that the classical solutions of (5.1) corresponds to the critical points
of the functional

i(u) ( Vu I' +u' - P(u) - hu)dx (5.3)

in E, where P(u) = fo p(s) ds. It can also be proved that the critical points of I, i.e.
the weak solutions of (5.1) corresponds to classical solutions of (5.1). See for example
[7].

Given the form of the functional I in which the quadratic term dominates for
large u, it is easy to prove the following proposition.

Proposition 5.1 The functional I satisfies the (P.S.) condition in E.

Given h satisfying (h), let us define

1 h(x)dx and h=h-h. (5.4)

In Proposition 5.1 and in what follows I D I is the Lebesgue measure of S1. Let us
consider the real function

V(s) = S2 - hs - P(s) (5.5)

and let us assume that

(p2) The function v(s) possesses exactly t distinct critical values, each of them

being a strict local maximum or minimum.

18



Let cl < c 2 < ... < cl be the critical values of v and define

C(v) = min (cj - cj-1 ) (5.6)2<i<_t

and let

p 1.= max Ip(s) I. (5.7)sER

The space E can be decomposed into E E x R where

E={uEE/ udx=O} (5.8)

The following result, known as Poincar -Wirtinger's inequality, assures the existence
of a constant 6 > 0 so that for every u E E

2611 ii w Vii 2 . (5.9)

The proof of this inequality is easily obtained by using the spectral decomposition of
the Laplacian under the given boundary conditions. Now we can prove the following
theorem.

Theorem 5.1 Assume p and h satisfies (pl), (p2) and (h). If

{1 h 112 + IP 1.l }2 < 4(6 + 1) 1FQIC(v) (5.10)

then the Neumann problem (5.1) possesses at least I classical solutions.

Proof. Since the functional I is bounded from below, and it satisfies the (P.S.)

condition, we have that infE I =I Q I Co is a critical value of I, and we can see that
co < ci.

Next we show that for every j = 2,...,1 the functional I possesses at least one

critical point u3 e IQIC' , This is done via Theorem 1.2. Let us define b = cj and

a = cj-, + 2c, where e > 0 will be determined later. Let us consider A = vC, - 1+C. We
will complete the proof if we can prove that

catE(I1 l, A)> 1 (5.11)

and
catE(I 0 1 , A) -0. (5.12)

Let s E vb then we see that

I(s) = f(s2 - P(s) - hs)dx

= jf j(s- hs- P(s)) (5.13)

< Hab,
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consequently vb C IbI01, and then by monotonicity property of relative category and
the fact that E is contractible

catE(I'I"I, A) > catE(vb, A)

= catm(vb, A). (5.14)

Since b = ci is a local maximum or minimum, and A = vc - 1+4, it is clear that

cat,(vb, A) = 1. (5.15)

Then (5.14) and (5.15) give (5.11).
Let us show now that (5.12) holds. Let u E JaPI and decompose it as u = ii + i!

with fi E . Then

n 2 Vu 12 +u 2 - P(u) - hu dx < a I f. (5.16)

Using the Schwarz inequality, we have
1 2 pU 1 Vf 2? i
f, f,2 _P~) hfdx < a I Q I - 0 2 f a dx+ 11 h 1 ii 112. (5.17)

By the Mean Value Theorem and Schwarz inequality we obtain that

fP(u) - P(i) dx < IP p I1 dx (5.18)

I IP I 1 I & 112

Then, by (5.17) and (5.18) we have

If2 ((jj2-_P(f)-_hi) <5 a101- 1 V~i1 +ii2dX

+ (IhII2+ IpoI I 2 I ) 11Ii 112. (5.19)

Using now the Poincar6-Wirtinger's inequality in (5.19) we see that

v(i) _ : a -(b+ 1) I 11 112 + Iv P I 1 1') 1I f 112. (5.20)

By maximizing the quadratic p(x) = -ax 2 + O3x, from (5.20) we see that

IVf) < haI I + (11 112 + I P .Q 1) 2

- Iv+4(6+1) (5.21)

From (5.10), we can find an c > 0 so that, from (5.21) we obtain

v(ii) < b-c. (5.22)
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We have proved that if u = ii+U E/ pIl then v(ii) < b-c. We define now a homotopy:

H : 0, ) X aI11 E(5.23)
(t,u) (1 - t)i + i.

Clearly H is continuous and it satisfies
H(0, u) = u Vu E al

H(1, u) E v b- V Vu E jal1fJ

H(t,u)=u VtE[0, 1]VuEA.
By the homotopy property of relative category we have then that

catE(J111 , A) < catE(vb-, A) = cat(vb-', A), (5.24)

and since b - c = ci - f and a = cj- 1 + c are regular values and there is no critical

point in between by Proposition 3.1 we have

cat,(vb-, A) = 0. (5.25)

We conclude from (5.24) and (5.25) that (5.12) holds.0

Remark 5.1 In this context we could prove a theorem analogous to Theorem 3.1.
Theorem 5.1 represents an extreme case where I possesses the same number of critical
values as v. We could consider intermediate situations in which we would be able
to relax condition (5.10) somewhat. The same results could be obtained for more
general elliptic problems.

Remark 5.2 If we assume that p is a periodic function and that h = 0, then a similar
result can be obtained for the problem

- Au = p(u) + f(x) (5.26)

9u = 0 (5.27)
8v

Here we would consider the corresponding critical point problem in the manifold
M = t x S'. See also (III for a related result.
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